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Abstract
The Casimir energy is calculated in one-, two- and three-dimensional spaces
for the field with generalized coordinates and momenta satisfying the deformed
Poisson brackets leading to the minimal length.

PACS numbers: 03.70.+k, 12.20.−m

1. Initial equations

Starting from the seminal work [1], the Casimir effect has been studied in the course of several
decades for various physical systems, ranging from problems in solid-state physics to those
in cosmology. Some interest has recently arisen in the study of the Casimir effect in the
so-called deformed spaces, i.e., in the spaces with deformed Poisson brackets between spatial
coordinates and momentum, in particular, in those leading to the minimal lengths [2–4]. In
the paper [2] the effect of minimal length in the Casimir–Polder interaction between neutral
atoms in the first-order correction term in the minimal uncertainty parameter was studied.
The influence of the minimal length on the Casimir energy between two plates was studied in
[3, 4]. Note also the papers [5, 6] where the Casimir effect was studied in the case of a
κ-deformed Poincare algebra.

In our work, we study the Casimir effect for the deformed electro-magnetic field with the
Hamiltonian

Ĥ =
∑

k

∑
α

(
P̂ 2

k,α

2
+

ω2
kQ̂

2
k,α

2

)
, (1)

where k is the wave vector, α is the polarization index, the frequency ωk = ck, where c is
the speed of light in vacuum, and Q̂k,α, P̂ k,α are operators of generalized coordinates and
momenta that satisfy deformed Poisson brackets:

Q̂k,αP̂ k,α − P̂ k,αQ̂k,α = ih̄
(
1 + βP̂ 2

k,α

)
, (2)

where β � 0 is the deformation parameter, and all other commutators are equal to zero. In
our case the configuration space is undeformed. We note that the deformation parameter can
also depend on k and α. In this work, however, we consider the case β = const.
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As is known, such commutation relations lead to the existence of the minimal length√〈
Q̂2

k,α

〉 = h̄
√

β in the space of field coordinates [7]. Obviously, in this case one has the
deformation of the field itself rather than the space deformation. Because for deformed fields〈
Q̂2

k,α

〉
� h̄2β one can say that the fluctuations are stronger in the case of deformed fields.

Note that here we have deformation of fields.
Proceeding now to new operators q̂k,α, p̂k,α ,

q̂k,α = Q̂k,α, P̂ k,α = 1√
β

tan(p̂k,α

√
β), (3)

it is easy to show that they are canonically conjugated, i.e.,

q̂k,αp̂k,α − p̂k,αq̂k,α = ih̄, (4)

and, hence, the Hamiltonian reads

Ĥ =
∑

k

∑
α

(
ω2

k q̂
2
k,α

2
+

tan2(p̂k,α

√
β)

2β

)
. (5)

The equations of motion of the deformed field have been studied in [8], where the
Hamiltonian was presented in the form of the expansion in powers of the ordinary creation and
annihilation operators. Generally speaking, the field equations are nonlinear and are usually
analyzed by means of the perturbation theory. We note that the nonlinear field described by the
q-oscillators which also leads to minimal length in the space of field has been studied in [9].
The model given by equation (5) is strongly nonlinear for the sufficiently large deformation
parameter β. Nevertheless, it is simple enough to be treated analytical or to get numerical
results.

The energy levels of the harmonic oscillator (5) with the commutation relation (4), or
Hamiltonian (1) with the commutation relation (2), are well known [7, 10]. One therefore
easily finds for the energy levels of the deformed field:

E...,Nk,α ,... =
∑

k

∑
α

h̄ωk

[(
Nk,α +

1

2

)√
1 +

(
βh̄ωk

2

)2

+
βh̄ωk

2

(
N2

k,α + Nk,α +
1

2

)]
, (6)

where Nk,α = 0, 1, 2, . . . are quantum numbers.
The energy of the vacuum state (Nk,α = 0) is

E...,0,... =
∑

k

∑
α

h̄ωk

2

⎛
⎝
√

1 +

(
βh̄ωk

2

)2

+
βh̄ωk

2

⎞
⎠ . (7)

The aim of the present work is to calculate the Casimir energy for the deformed space as
a function of the deformation parameter β; to accomplish this task, we shall start from
equation (7). We consider Casimir effect in one-, two- and three-dimensional cases separately
because each of these cases has some peculiarity related to different boundary conditions for
different dimensions.

2. Casimir energy in the one-dimensional case

Let us first consider the one-dimensional (1D) case. The scalar field is located on the segment
of length a along the x-axis between the points x = 0 and x = a, at which the field is zero.
For such conditions, the wave vector in equation (7) k = πn/a, n = 1, 2, . . . , and there is

2
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no polarization. By definition, the Casimir energy ε is the difference of the vacuum energy
density (7) in volume a and infinite volume L:

ε = 1

a2

∞∑
n=1

h̄cπn

2

⎛
⎝
√

1 +

(
βh̄c

2a
n

)2

+
βh̄c

2a
n

⎞
⎠

− 1

2π

∫ ∞

−∞

h̄c|k|
2

⎛
⎝
√

1 +

(
βh̄c

2
k

)2

+
βh̄c

2
|k|
⎞
⎠ dk. (8)

To regularize this expression one can introduce a cut-off function e−νk, ν > 0, which ensures
both the convergence of the summation over n and the integration over k. Further, we make
the change of variable k = πn/a to get

ε =
ν→0

h̄cπ

2a2

[ ∞∑
n=1

e−νnn
(√

1 + (β∗n)2 + β∗n
)−

∫ ∞

0
e−νnn

(√
1 + (β∗n)2 + β∗n

)
dn

]
, (9)

where the dimensionless deformation parameter is

β∗ = β
h̄cπ

2a
.

We then apply the Abel–Plana formula [11] to calculate the sum over n in equation (9):
∞∑

n=1

f (n) =
∫ ∞

0
f (n) dn − f (0)

2
+ i
∫ ∞

0

f (it) − f (−it)

e2πt − 1
dt. (10)

Equation (10) can be applied for functions with f (0) = 0 as well as for function with f (0) �= 0.
Note that we can rewrite this equation in the following way. The sum on the left-hand side of
equation (10) can be written as

∑∞
n=0 and then the right-hand side of this equation will contain

f (0)/2 instead of −f (0)/2. In our case

f (n) = e−νnn
(√

1 + (β∗n)2 + β∗n
)
. (11)

Using equations (10) and (11), and performing the integration over t (note that the branching
of the integrand at t = 1/β∗ must be taken into account) and ν → 0 one gets

ε = −h̄cπ

a2

∫ 1/β∗

0

t
√

1 − (β∗t)2

e2πt − 1
dt. (12)

Note that for β∗ = 0 we recover the well-known result for the Casimir energy in the one-
dimensional case for the undeformed field [10, 12]:

ε = − h̄cπ

24a2
. (13)

Let us now find the expansion of ε for β∗ > 1. For this purpose we rewrite equation (12)
as follows:

ε = − h̄c

2β∗a2

∫ 1

0

√
1 − x2

2πx/β∗

e2πx/β∗ − 1
dx. (14)

We then expand the second factor under the integral in a power series in 2πx/β∗ and use the
definition of the Bernoulli numbers Bn [13, 14] to obtain

ε = − h̄c

2β∗a2

∞∑
n=0

Bn

n!

(
2π

β∗

)n ∫ 1

0
xn
√

1 − x2 dx. (15)

3
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Figure 1. Casimir energy as a function of the deformation parameter.

The integral in equation (15) is the Euler B-function, and the Bernoulli numbers are expressed
via Riemann’s ζ -function [13, 14]. As a result we obtain

ε = h̄cπ

2a2

( ∞∑
n=1

(−)n
	(n + 1/2)ζ(2n)

(n + 1)!2
√

πβ∗2n+1
− 1

4β∗ +
1

3β∗2

)

= − h̄cπ

24a2

(
3

β∗ − 4

β∗2
+

π2

4β∗3
− π4

120β∗5
+

π6

2016β∗7
+ · · ·

)
. (16)

It is interesting to note that one can come to the same result directly from equation (9).
For this purpose, we extract the asymptotic term 2β∗n2 + 1/2β∗ for n → ∞ in the expression
in parentheses in equation (9) and write it as follows:

ε =
ν→0

h̄cπ

2a2

{ ∞∑
n=1

e−νn

[
β∗n2

(√
1 +

1

(β∗n)2
− 1

)
− 1

2β∗

]

−
∫ ∞

0
e−νn

[
β∗n2

(√
1 +

1

(β∗n)2
− 1

)
− 1

2β∗

]
dn

+
∞∑

n=1

e−νn

(
2β∗n2 +

1

2β∗

)
−
∫ ∞

0
e−νn

(
2β∗n2 +

1

2β∗

)
dn

}
. (17)

The first integral in equation (17) yields (−1/3β∗2) for ν → 0, while the difference between
the two last terms gives (−1/4β∗). We therefore have

ε = h̄cπ

2a2

{ ∞∑
n=1

[
β∗n2

(√
1 +

1

(β∗n)2
− 1

)
− 1

2β∗

]
− 1

4β∗ +
1

3β∗2

}
. (18)

Because the sum over n converges, the cut-off parameter ν can be set to zero. By expanding
(formally) the square root in a power series in 1/β∗2 and using the definition of the Riemann
ζ -function, we come to equation (16).

4
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In order to make computer calculations more convenient, formula (18) can be transformed
to the following form:

ε = − h̄cπ

2β∗a2

[
1

2

∞∑
n=1

1

(
√

1 + (β∗n)2 + β∗n)2
+

1

4
− 1

3β∗

]
. (19)

We shall note, however, that the calculation of ε using equation (12) is more effective in
comparison with the summation in equation (19). This is because of the fast convergence of
the integral in equation (12).

Let us now make the expansion of the Casimir energy for small values of the deformation
parameter. One can apply the Euler–Maclaurin formula directly to (9), as Casimir did in [1].
However, the result can be obtained in a more convenient way if we rewrite equation (9) as
follows:

ε =
ν→0

−h̄cπ

2a2

d

dν

√
1 +

(
β∗ d

dν

)2
( ∞∑

n=1

e−νn −
∫ ∞

0
e−νn dn

)

=
ν→0

−h̄cπ

2a2

d

dν

√
1 +

(
β∗ d

dν

)2 ( 1

eν − 1
− 1

ν

)

=
ν→0

−h̄cπ

2a2

d

dν

√
1 +

(
β∗ d

dν

)2 ∞∑
n=1

Bn

n!
νn−1. (20)

Here again we have used the definition of the Bernoulli numbers Bn [13, 14]. We now make a
formal expansion of the square root in powers of β∗2 and take the derivatives with respect to
ν, with subsequently taking the limit ν → 0, to find, after a few simple transformations, the
following asymptotic expansion:

ε = −h̄cπ

2a2

(
1

12
+

∞∑
n=0

(−)n
	(n − 1/2)

(n + 1)!4
√

π
B2n+2β

∗2n

)

= − h̄cπ

24a2

(
1 − β∗2

20
− β∗4

168
− β∗6

320
− 5

1408
β∗8 − · · ·

)
. (21)

The result of the calculations of the Casimir energy, equations (12) and (19),

ε∗
1D = ε

/
h̄cπ

24a2

is presented in figure 1 (curve 1D). As one can see, the Casimir energy for all values of the
parameter β∗ is larger than for the undeformed field and goes to zero for β∗ → ∞. Therefore,
the deformation leads to the decrease of the attraction of the domain boundaries localizing the
field caused by the polarization of vacuum.

3. The three-dimensional case

We now calculate the Casimir energy in the three-dimensional (3D) case. The field is located
between two infinite parallel plates separated by a distance a and is set to zero at the plates.

The wave vector k =
√

k2
x + k2

y + k2
z ,−∞ < kx < ∞,−∞ < ky < ∞, kz = πn/a, n =

0, 1, 2, . . . , and the sum

1

L2

∑
k

. . . →
L→∞

1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∞∑
n=0

. . . .

5
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Unlike as in the 1D case, in the 3D case the term n = 0 must be taken into account in the
expression for the ground-state energy (7). However, the polarization index α for n = 0 and
D = 3 has only one value because of the field transversality. From the definition of the
Casimir energy, one has

ε = 1

a

1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

h̄c

2

√
k2
x + k2

y

⎡
⎣
√

1 +

(
βh̄c

2

)2 (
k2
x + k2

y

)
+

βh̄c

2

√
k2
x + k2

y

⎤
⎦

+
1

a

∑
α

1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∞∑
n=1

h̄c

2

√
k2
x + k2

y +
(π

a
n
)2

×
⎡
⎣
√

1 +

(
βh̄c

2

)2 (
k2
x + k2

y +
(π

a
n
)2
)

+
βh̄c

2

√
k2
x + k2

y +
(π

a
n
)2

⎤
⎦

−
∑

α

1

(2π)3

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

h̄c

2

√
k2
x + k2

y + k2
z

×
⎡
⎣
√

1 +

(
βh̄c

2

)2 (
k2
x + k2

y + k2
z

)
+

βh̄c

2

√
k2
x + k2

y + k2
z

⎤
⎦ . (22)

The integration is performed in polar coordinates, q =
√

k2
x + k2

y . We then change the

variables k =
√

q2 + (πn/a)2 (replacing k with q) and introduce a cut-off function e−νq to get
the following result:

ε =
ν→0

h̄c

2πa

⎧⎨
⎩1

2

∫ ∞

0
dq q2 e−νq

⎡
⎣
√

1 +

(
βh̄cq

2

)2

+
βh̄cq

2

⎤
⎦

+
∞∑

n=1

∫ ∞

πn/2
dq q2 e−νq

⎡
⎣
√

1 +

(
βh̄cq

2

)2

+
βh̄cq

2

⎤
⎦
⎫⎬
⎭

− h̄c

2π2

∫ ∞

0
dkz

∫ ∞

kz

dq q2 e−νq

⎡
⎣
√

1 +

(
βh̄cq

2

)2

+
βh̄cq

2

⎤
⎦ . (23)

The Abel–Plana formula (10) with the function

f (n) =
∫ ∞

πn/2
q2 e−νq

⎡
⎣
√

1 +

(
βh̄cq

2

)2

+
βh̄cq

2

⎤
⎦ dq (24)

is then applied to the second term in brackets. Noting that the term f (0) in equation (10)
cancels the first term in equation (23), and the last term in (23) cancels the first integral from
the Abel–Plana formula (10), we obtain, after simple transformations

ε = −h̄cπ2

2a4

∫ 1/β∗

0
dt

1

e2πt − 1

∫ t

−t

x2
√

1 − (β∗x)2 dx. (25)

Finally, taking the integral over x we find

ε = − h̄cπ2

8β∗2a4

∫ 1/β∗

0

(2β∗2t3 − t)
√

1 − (β∗t)2 + arcsin(β∗t)/β∗

e2πt − 1
dt. (26)

6
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For β∗ → 0 the numerator of the integrand in (26) goes to 8β∗2t3/3 and, hence,

ε = −h̄cπ2

3a4

∫ ∞

0

t3

e2πt − 1
dt = − h̄cπ2

720a4
. (27)

This is the Casimir result [1].
We shall now find the expansion of the Casimir energy in powers of 1/β∗ (for β∗ �= 0).

Expression (26) after the change of variable x = β∗t is

ε = − h̄cπ

16a4β∗3

∫ 1

0

[
(2x2 − 1)

√
1 − x2 +

arcsinx

x

]
2πx/β∗

e2πx/β∗ − 1
dx. (28)

The expansion of the second factor under the integral in powers of 2πx/β∗ [13, 14] leads to

ε = − h̄cπ

16a4β∗3

∞∑
n=0

Bn

n!

(
2π

β∗

)n

I (n), (29)

where

I (n) =
∫ 1

0
xn

[
(2x2 − 1)

√
1 − x2 +

arcsinx

x

]
dx. (30)

The integration in (30) gives

I (0) = π

2

(
ln 2 − 1

4

)
,

I (1) = π

2
− 16

15
,

I (2n) = π

4n
− 2	(3/2)	(n + 3/2)

n	(n + 3)
.

We need the values of I (n) for n > 1 only for even n because B2n+1 = 0 for n > 1. Using
the relation between the Bernoulli numbers and the Riemann ζ -function, we find for β∗ �= 0,
after a few transformations:

ε = − h̄cπ2

16a4β∗3

{
1

2

(
ln 2 − 1

4

)
− 1

β∗

(
π

2
− 16

15

)

+
∞∑

n=1

(−)n−1 ζ(2n)

β∗2n2n

[
1 − (2n + 1)!

22n−1(n!)2(n + 1)(n + 2)

]}

= − h̄cπ2

16a4β∗3

[
1

2

(
ln 2 − 1

4

)
− 1

β∗

(
π

2
− 16

15

)
+

π2

24β∗2
+ · · ·

]
. (31)

We now calculate the asymptotic expansion of ε for small β proceeding from formula
(23), which we rewrite as follows:

ε =
ν→0

d2

dν2

⎡
⎣
√

1 +

(
βh̄c

2

d

dν

)2

− βh̄c

2

d

dν

⎤
⎦

× 1

ν

(
h̄c

4πa
+

h̄c

2πa

∞∑
n=1

e−νπn/a − h̄c

2π2

∫ ∞

0
dkz e−νkz

)
. (32)

Changing the cut-off parameter νπ/a → ν we find after simple calculations

ε =
ν→0

h̄cπ2

2a4

d2

dν2

⎡
⎣
√

1 +

(
β∗ d

dν

)2

− β∗ d

dν

⎤
⎦ 1

ν

(
1

2
+

1

eν − 1
− 1

ν

)
. (33)

7
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Expanding the above expression in a power series in β∗ and using the procedure from the
previous section we finally obtain

ε = h̄cπ2

2a4

(
− 1

360
+
∑
k=1

	(k − 1/2)(−)k−1B2k+4

k!
√

π2(2k + 4)(2k + 3)
β∗2k

)
. (34)

A few first terms read

ε = − h̄cπ2

720a4

(
1 − 1

7
β∗2 − 3

112
β∗4 − 5

264
β∗6 + · · ·

)
. (35)

The first term gives the Casimir result [1], and the remaining terms take into account field
deformation. As in the one-dimensional case, the deformation leads to the repulsion and thus
reduces the attraction between the plates.

The Casimir energy,

ε∗
3D = ε

/
h̄cπ2

720a4
,

is shown in figure 1 (curve 3D); to calculate it numerically, we have used equation (26).

4. The two-dimensional case

On the two-dimensional (2D) xy plane the field is located in an infinite stripe of width a
between y = 0 and y = a; at y = 0 and y = a the field is zero. In fact in D = 2 we have a
scalar field satisfying Dirichlet condition on the boundary. From the field transversality only
one polarization remains; it is perpendicular to the wave vector with the components kx, ky :
−∞ < kx < ∞, ky = πn/a, n = 1, 2, 3, . . . . The value n = 0 is not taken into account
because at n = 0 the field is zero owing to its transversality.

The Casimir energy is

ε = 1

2πa

∫ ∞

−∞
dkx

∞∑
n=1

h̄c

2

√
k2
x +
(π

a
n
)2

×
⎡
⎣
√

1 +

(
βh̄c

2

)2 (
k2
x +
(π

a
n
)2
)

+
βh̄c

2

√
k2
x +
(π

a
n
)2

⎤
⎦

− 1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

h̄c

2

√
k2
x + k2

y

×
⎡
⎣
√

1 +

(
βh̄c

2

)2 (
k2
x + k2

y

)
+

βh̄c

2

√
k2
x + k2

y

⎤
⎦ . (36)

Because at n = 0 the field is zero, the function f (n) must be determined in such a way that
f (0) = 0. This determination can be made through the cut-off function e−ν/n. The same
determination must be made also in the second term of equation (36). This corresponds to the
case that the field is defined in a large volume tending to infinity and is zero on the surface
that bounds the volume.

Using the Abel–Plana formula after transformations similar to those made in the previous
section we obtain from equation (36):

ε = −h̄cπ

a3

∫ 1/β∗

0

t2dt

e2πt − 1

∫ 1

0
x2

√
1 − (β∗t)2x2

1 − x2
dx. (37)

8
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For β = 0 the integral over x is easily calculated (it is π/4) and from (37) one obtains the
well-known result [10, 12]:

ε = − h̄c

16πa3
ζ(3).

For β �= 0 the integral over x in (37) cannot be expressed in terms of elementary functions.
It can, however, be reduced to the complete elliptic integrals E(k) and K(k) [13, 14]:∫ 1

0
x2

√
1 − (β∗t)2x2

1 − x2
dx = 1

3

(
2 − 1

k2

)
E(k) +

1

3

(
1

k2
− 1

)
K(k), (38)

where the modulus k = β∗t .
Let us now find the expansion of ε for small β. For this purpose, one can use the known

expansions of the elliptic integrals for small values of the modulus k or proceed directly from
equation (37). We take the second route and expand the square root in the numerator of the
integrand in equation (37) in power series in β∗; one has

ε = −h̄cπ

a3

∞∑
m=0

	(3/2)(−β∗2)m

m!	(3/2 − m)

∫ 1

0
dx

x2m+2

√
1 − x2

∫ 1/β∗

0

t2m+2

e2πt − 1
dt. (39)

The integral over x is 	(m+3/2)	(1/2)/2	(m+2). The second integral over t can be split into
two parts: from 0 to ∞ and from ∞ to 1/β∗. The first one yields 	(2m + 3)ζ(2m + 3)/2π2m+3

and the second one gives the terms proportional to e−1/β∗
, which can be neglected in the limit

β∗ → 0. We therefore obtain

ε = −h̄cπ

a3

[
ζ(3)

16π2
−
∑
m=1

	(3/2)	(m − 1/2)	(1/2)	(m + 3/2)

2π	(m + 2)m!

× 	(2m + 3)ζ(2m + 3)

(2π)2m+3
β∗2m + O(e−1/β∗

)

]

= −h̄cπ

a3

[
ζ(3)

16π2
− 9ζ(5)

128π4
β∗2 − 225ζ(7)

2048π6
β∗4 + · · ·

]
. (40)

Let us calculate the expansion of the Casimir energy in inverse powers of the deformation
parameter. It is more convenient to proceed directly from formula (37). By changing the
variable of integration y = β∗t and expanding the integrand in a power series in 1/β∗, as has
been done in the previous cases, we get

ε = − h̄c

2a3β∗2

∞∑
n=0

Bn

n!

(
2π

β∗

)n

J (n), (41)

where

J (n) =
∫ 1

0
dx

x2

√
1 − x2

∫ 1

0
dy yn+1

√
1 − x2y2. (42)

The quantities J (n) for n = 0, 1, 2, . . . can be easily evaluated to yield

J (0) = 1

3

(
π

2
− 2

3

)
,

J (1) = G

4
− 1

24
,

J (2) = 2

15
,

9
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where G = 0.915 965 594 . . . is the Catalan constant. We therefore for β∗ �= 0 have

ε = − h̄c

2a3β∗2

[
1

3

(
π

2
− 2

3

)
−
(

G

4
− 1

24

)
π

β∗ +
2π2

45β∗2
+ · · ·

]
. (43)

The result of the numerical calculations using formula (37), for the dimensionless Casimir
energy

ε∗
2D = ε

/
h̄c

16πa3
ζ(3),

is presented in figure 1 (curve 2D). As in the two- and three-dimensional cases, the Casimir
energy ε goes to zero for β → ∞.

5. Conclusions

We have shown that the deformation of the field given by equation (2) leads to suppression of
the Casimir energy for the considered simple-topology surfaces localizing the field. The
mechanism of this suppression is the following. The Casimir effect is determined by
the difference between the energy of quantum fluctuations in the free configuration space
and quantum fluctuation energy in the configurational space with corresponding boundary
conditions. Just this difference corresponds to the suppression of Casimir energy by the
deformation. This fact leads to an additional repulsion of the domain boundaries confining
the field.
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